Growth cone localization of neural cell adhesion molecule on central nervous system neurons in vitro
نویسندگان
چکیده
Ultrastructural analysis of colloidal gold immunocytochemical staining and immunofluorescence microscopy has been used to study the presence of neural cell adhesion molecule (NCAM) on the surface of neuronal growth cones. The studies were carried out with cultures of rat hypothalamic and ventral mesencephalic cells, using morphology and expression of tyrosine hydroxylase, neurofilaments, and glial fibrillary acidic protein as differential markers for neurons and glia. NCAM was found on all plasmalemmal surfaces of neurons including perikarya and neurites. The density of NCAM varied for different neurons growing in the same culture dish, and neurons had at least 25 times more colloidal gold particles on their plasmalemmal membranes than astroglia. Of particular interest in the present study was a strong labeling for NCAM on all parts of neuritic growth cones, including the lamellar and filopodial processes that extend from the tip of the axon. The density of NCAM was similar on different filopodia of the same growth cone. Therefore, in situations where homophilic (NCAM-NCAM) binding might contribute to axon pathfinding, a choice in direction is more likely to reflect differences in the NCAM content of the environment, rather than the distribution of NCAM within a growth cone. On the other hand, the variation in NCAM levels between single neurons in culture was significant and could provide a basis for selective responses of growing neurites.
منابع مشابه
P 154: The Role of Inflammation in the Seizure Occurrence
Most common hypotheses of seizure initiation are increased neural excitation, decreased inhibition or both. But, the conditions that lead to these activation states not to be clear yet. Recent studies challenge traditional concepts and indicate new evidence that a key epileptogenic process may actually begin in the blood vessel. Seizures could be initiate by a variety of insults to the brain, s...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملP27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model
Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملNanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth.
Understanding neurite growth regulation remains a seminal problem in neurobiology. During development and regeneration, neurite growth is modulated by neurotrophin-activated signaling endosomes that transmit regulatory signals between soma and growth cones. After injury, delivering neurotrophic therapeutics to injured neurons is limited by our understanding of how signaling endosome localizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 102 شماره
صفحات -
تاریخ انتشار 1986